Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon.
نویسندگان
چکیده
We have used a monoclonal antibody against the neuron-specific class III beta-tubulin (TuJ1; Lee et al., 1990b) to study the distribution and morphology of immature neurons in the proliferative ventricular and subventricular zones of the developing telencephalon. Mouse brains from embryonic day 12 (E12) to postnatal day 5 (P5) were fixed either with a non-cross-linking agent, HistoChoice, or with 4% paraformaldehyde, and processed for TuJ1 immunohistochemistry. TuJ1 immunoreactivity first appeared in the proliferative zones of the developing cerebral cortex at E13-E14 as the cortical plate was emerging. After E14, tangentially oriented TuJ1-positive cells were abundant at the interface between the ventricular and subventricular zones. This tangential pattern was less conspicuous in the developing striatum. Within the cortical and striatal ventricular zone TuJ1-positive cells were less numerous and displayed a variety of orientations and morphologies. Postnatally, after the period of neurogenesis has ended, TuJ1 immunoreactivity continued to increase in the subventricular zone and remained high until the last developmental stage examined (P5). Anti-MAP2, another neuron-specific marker, never labeled the cells of the ventricular and subventricular zones, pre- or postnatally. To determine the birthdates of TuJ1-positive cells in the cortical-ventricular and subventricular zones, brains were double labeled with TuJ1 and bromodeoxyuridine according to different pulse-chase schedules. TuJ1-positive cells were postmitotic and generated throughout the period of cortical neurogenesis. Collectively, the results suggest that TuJ1 immunoreactivity distinguishes two neuronal populations: those that remain for an indefinite period of time in the proliferative zones, and those that leave the proliferative zones soon after being generated. Although the fate of the TuJ1-positive cells that reside in the proliferative zones remains unclear, their tangentially aligned orientation and their distribution suggest that they migrate independent of radial glial fibers.
منابع مشابه
Differentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 9 شماره
صفحات -
تاریخ انتشار 1994